Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Criticality safety evaluation for the direct disposal of used nuclear fuel; preparation of data for burnup credit evaluation (Contract research)

Yamamoto, Kento*; Akie, Hiroshi; Suyama, Kenya; Hosoyamada, Ryuji*

JAEA-Technology 2015-019, 110 Pages, 2015/10

JAEA-Technology-2015-019.pdf:3.67MB

In the direct disposal of used nuclear fuel (UNF), criticality safety evaluation is one of the important issues since UNF contains some amount of fissile material. The recent development of higher-enrichment fuel has enhanced the benefit of the application of Burnup Credit. In the present study, the effects of the several parameters on the reactivity of disposal canister model were evaluated for used PWR fuel. The parameters are relevant to the uncertainties of depletion calculation code, irradiation history, and axial and horizontal burnup distribution, which are known to be important effect in the criticality safety evaluation adopting burnup credit. The latest data or methodology was adopted in this evaluation, based on the various latest studies. The appropriate margin of neutron multiplication factor in the criticality safety evaluation for UNF can be determined by adopting the methodology described in the present study.

Journal Articles

Analysis of benchmark results for reactor physics of LWR next generation fuels

Kitada, Takanori*; Okumura, Keisuke; Unesaki, Hironobu*; Saji, Etsuro*

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 8 Pages, 2004/04

Burnup calculation benchmark has been carried out for the LWR next generation fuels aiming at high burnup up to 70 GWd/t with UO$$_{2}$$ and MOX. Based on the submitted results by many benchmark participants, the present status of calculation accuracy has been confirmed for reactor physics parameters of the LWR next generation fuels, and the factors causing the calculation differences were analyzed in detail. Moreover, the future experiments and research subjects necessary to reduce the calculation differences were discussed and proposed.

Journal Articles

Anomaly diagnosis of nuclear reactor plant by use fluctuating signals

Nihon Genshiryoku Gakkai-Shi, 23(9), p.657 - 665, 1981/00

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1